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ABSTRACT 

The earthquake engineering profession is increasingly utilizing nonlinear response history analyses (RHA) 

to evaluate seismic performance of existing structures and proposed designs of new structures. One of the 

main ingredients of nonlinear RHA is a set of ground motion records representing the expected hazard 

environment for the structure. When recorded motions do not exist (as is the case for central U.S.) or when 

high-intensity records are needed (as is the case for San Francisco and Los Angeles), ground motions from 

other tectonically similar regions need to be selected and scaled. The modal-pushover-based scaling 

(MPS) procedure was recently developed to determine scale factors for a small number of records such 

that the scaled records provide accurate and efficient estimates of “true” median structural responses. The 

adjective “accurate” refers to the discrepancy between the benchmark responses and those computed from 

the MPS procedure. The adjective “efficient” refers to the record-to-record variability of responses. Herein, 

the accuracy and efficiency of the MPS procedure are evaluated by applying it to four types of existing 

“Ordinary Standard” bridges typical of reinforced concrete bridge construction in California. These bridges 

are the single-bent overpass, multi-span bridge, curved bridge and skew bridge. As compared to 

benchmark analyses of unscaled records using a larger catalog of ground motions, it is demonstrated that 

the MPS procedure provided accurate estimate of the EDPs accompanied by significantly reduced record-

to-record variability of the EDPs. Thus it is a useful tool for scaling ground motions as input to nonlinear 

RHAs of “Ordinary Standard” bridges. 

 

INTRODUCTION 

Current highway bridge design practice in California is governed by the Seismic Design Criteria, SDC-2006 

(Caltrans, 2006), which allows equivalent static analysis and linear elastic dynamic analysis for estimating 
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the displacement demands, and pushover analysis for establishing the displacement capacities for 

“Ordinary Standard” bridges. For a bridge to be considered as an “Ordinary Standard” bridge, (1) the span 

length should be less than 90 m, (2) the bridge should be constructed with normal weight concrete, (3) 

foundations must be supported on spread footings, pile caps with piles or pile shafts, and (4) the soil is not 

susceptible to liquefaction or lateral spreading during strong shaking (Caltrans, 2006). More than 90% of 

bridges in California are the “Ordinary Standard” bridges (Mark Yashinsky, oral commun.). 

For “Ordinary Standard” bridges, analysis methods based on the linear-elastic assumption may be 

appropriate in regions having low-seismicity. In seismically active regions, near-fault static (surface 

displacement) and dynamic effects (long-period velocity pulses) may impart significant seismic demand to 

bridges and drive them into the inelastic range, invalidating the linear-elastic assumption (Goel and Chopra, 

2008; Kalkan and Kunnath, 2006). To fully portray the “true” nonlinear behavior of bridges to near-fault 

ground motions, nonlinear RHA may be required. Nonlinear RHAs utilize a set of ground motions 

representing hazard environment expected for the structure. When recorded motions do not exist (as is the 

case for central U.S.) or when high-intensity records are needed (as is the case for San Francisco and Los 

Angeles), ground motions from other tectonically similar regions need to be selected and modified. Most of 

the procedures to modify ground motion records fall into one of two categories: spectral matching 

(Lilhanand and Tseng, 1987, 1988) and amplitude scaling (Katsanos et al., 2009).  

The objective of amplitude-scaling methods is to determine scale factors for a small number of records 

such that the scaled records provide an accurate estimate of “true” median structural responses, and, at the 

same time, are efficient (i.e., reduce the record-to-record variability of responses). Amplitude-scaling of 

records was accomplished previously by scaling them to a common intensity measure, such as peak 

ground acceleration (PGA), effective peak acceleration, Arias intensity, or effective peak velocity (Nau and 

Hall, 1984; Kurama and Farrow, 2003). These approaches were generally inaccurate and inefficient for 

structures responding in the inelastic range (Shome and Cornell, 1998; Kurama and Farrow, 2003). Scaling 

of records to a target value of the elastic spectral acceleration at a fundamental period provides improved 

results for structures whose response is dominated by their first-“mode” (Shome et al., 1998). However, this 

scaling method becomes less accurate and less efficient for structures responding significantly in their 

higher vibration modes or far into the inelastic range (Mehanny, 1999; Alavi and Krawinkler, 2000; Kurama 

and Farrow, 2003). To consider higher mode response, a vector intensity measure (IM) of first-“mode” 

spectral acceleration and the spectral ratio of first-“mode” and second”-mode” have been developed 
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(Bazzurro, 1998; Shome and Cornell, 1999). Although this vector IM improves accuracy, it remains 

inefficient for near-fault records with a dominant velocity pulse (Baker and Cornell, 2006). 

To recognize the lengthening of the apparent period of vibration due to yielding of the structure, scalar 

IMs have been considered (Mehanny 1999; Cordova et al., 2000). Alternatively, scaling earthquake records 

to minimize the difference between its elastic response spectrum and the target spectrum has been 

proposed (Kennedy et al., 1984; Malhotra, 2003; Alavi and Krawinkler, 2004; Naeim et al., 2004; Youngs et 

al., 2007). Additional studies have suggested that selection of ground motion records taking into account 

the elastic spectral shape may provide improved estimates of EDPs (Baker and Cornell, 2005; Mackie and 

Stajadinovic, 2007). The measure of spectral shape used in these studies is “epsilon”, or the number of 

standard deviations the response spectral ordinate differentiates from a predicted median spectral value 

from an empirical ground motion prediction equation. 

Because the preceding methods do not consider explicitly the inelastic behavior of the structure, they 

may not be appropriate for near-fault sites where the inelastic deformation can be significantly larger than 

the deformation of the corresponding linear system. For such sites, scaling methods that are based on the 

inelastic deformation spectrum or consider the response of the first-“mode” inelastic SDF system are more 

appropriate (Shantz, 2006; Luco and Cornell, 2007; Tothong and Cornell, 2008; PEER, 2009). 

Kalkan and Chopra (2010, 2011a) used these concepts to develop a modal-pushover-based scaling 

(MPS) procedure for selecting and scaling earthquake ground motion records in a form convenient for 

evaluating existing structures and proposed designs of new structures. This procedure explicitly considers 

structural strength, determined from the first-“mode” pushover curve, and determines a scaling factor for 

each record to match a target value of the deformation of the first-“mode” inelastic SDF system. The MPS 

procedure for one component of ground motion has been extended for two horizontal components of 

ground motion for three-dimensional analysis of structural systems (Reyes and Chopra, 2011). The MPS 

procedure has been proven to be accurate and efficient for low-, medium-, and high-rise symmetric plan 

buildings (Kalkan and Chopra, 2010, 2011a,b; Reyes and Chopra, 2011). Here, the accuracy and efficiency 

of the MPS procedure are further evaluated for one and two components of ground motion by applying it to 

four existing reinforced concrete “Ordinary Standard” bridges typical of reinforced concrete bridge 

construction in California. These bridges are single-bent overpass, multi-span bridge, curved bridge and 

skew bridge responding predominantly in their first-”mode”. 
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MPS PROCEDURE FOR “ORDINARY STANDARD” BRIDGES 

The existing MPS procedure, for a single horizontal component of ground motion, scales each record by a 

factor such that the deformation of the first-“mode” inelastic SDF system—established from the first-“mode” 

pushover curve for the structure due to the scaled record matches a target value of inelastic deformation 

(Kalkan and Chopra, 2010, 2011a). The target value of inelastic deformation is defined as the median 

deformation of the first-“mode” inelastic SDF system due to a large ensemble of unscaled ground motions 

compatible with the site-specific seismic hazard conditions. The target value of inelastic deformation may 

be estimated by either (1) performing nonlinear RHA of the inelastic SDF system to obtain the peak 

deformation due to each ground motion, and then computing the median of the resulting data set; or (2) 

multiplying the median peak deformation of the corresponding linear SDF system, known from the elastic 

design spectrum (or uniform hazard spectrum) by the inelastic deformation ratio, estimated from an 

empirical equation with known yield-strength reduction factor.  

For first-”mode” dominated structures, scaling earthquake records to the same target value of the 

inelastic deformation of the first-“mode” SDF system is shown to be sufficient (Kalkan and Chopra, 2010, 

2011a).  

Summarized below is the step-by-step MPS procedure for “Ordinary Standard” bridges:  

1. For the given site, define the target pseudo-acceleration response spectrum either as the 

probabilistic seismic hazard analysis (PSHA) based uniform hazard spectrum or code-based 

design spectrum, or the median pseudo-acceleration spectrum for a large ensemble of (unscaled) 

earthquake records compatible with the site-specific seismic hazard conditions. For California, a 

web-based tool (http://dap3.dot.ca.gov/shake_stable/index.php) is available to calculate both 

deterministic and probabilistic design spectrum based on the SDC-2006. 

 

2. Compute the frequencies !n (periods ) and mode shape vectors "n of the first few modes of 

elastic vibration of the bridge.  

 

3. Develop the base shear deck displacement Vb1-ud1 relation or pushover curve by nonlinear 

pushover analysis of the bridge subjected to gradually increasing lateral forces with an invariant 

force distribution. The distribution of lateral forces (sn) is determined from the shape of the 



 
 

 
 

5 

fundamental mode multiplied by tributary mass (lumped mass), that is sn = m"n. Gravity loads are 

applied before starting the pushover analysis. 

4. Idealize the pushover curve and select a hysteretic model for cyclic deformations, both appropriate 

for the bridge’s structural system and materials (Han and Chopra, 2006; Bobadilla and Chopra, 

2007). Determine the yield-strength reduction factor  (equals to strength required for the bridge 

to remain elastic divided by the yield strength of the structure) from:
 

, where 

 is the effective modal mass,  is the target spectral acceleration (or design acceleration) at 

the first-“mode” and  is the yield point value of base shear determined from the idealized 

pushover curve.  
 

5. Convert the idealized pushover curve to the force-deformation ( ) relation of the first-

”mode” inelastic SDF system by utilizing Fs1/L1= Vb1 /  and D1 = ud1 / (!1 !d1) in which 

, !d1 is the value of  at the deck level, ud1 is the deck displacement of a bridge under 

first-“mode” pushover,  and each element of the influence vector  is equal 

to unity (Fs1/L1 v’s D1 is simply the Acceleration Displacement Response Spectrum (ADRS) format). 

 
6. For the first-”mode” inelastic SDF system, establish the target value of deformation  from 

, where ;  is determined from an empirical equation (e.g., 

Chopra and Chintanapakdee, 2003, 2004) for the inelastic deformation ratio corresponding to the 

yield-strength reduction factor , determined in Step 4 as: 

                                      (1) 

in which, the limiting value of  at  is given by  LR  as: 

                                                              (2)                                   
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where a is the post-yield stiffness ratio of the inelastic SDF system and Tc is the period separating 

the acceleration and velocity-sensitive regions of the target spectrum (e.g., see right panel in figure 

1); the parameters in equation (1) are: a=61, b=2.4, c=1.5, and d=2.4. Equations (1) and (2) and 

values of their parameters are valid for far-fault ground motions, independent of (i) earthquake 

magnitude and distance, and (ii) NEHRP site class B, C, and D; and also for near-fault ground 

motions. 

 

7. Compute the peak deformation  of the first-”mode” inelastic SDF system defined 

by the force deformation relation developed in Steps 4 and 5 and damping ratio #1. The initial 

elastic vibration period of the system is T1 = 2" (L1D1y  / Fs1y)1/2 . For a SDF system with known T1 

and #1,  can be computed by nonlinear RHA due to one of the selected ground motions  

multiplied by a scale factor SF, to be determined to satisfy Step 8, by solving 
 

                  (3) 

8. Compare the normalized difference between the target value of the deformation  of the first-

”mode” inelastic SDF system (Step 6) and the peak deformation , determined in Step 7 against 

a specified tolerance,  

 

                        (4) 

9. Determine the scale factor SF such that the scaled record (SF)  satisfies the criterion of 

equation (4). Because equation (3) is nonlinear, SF cannot be determined a priori, but requires an 

iterative procedure starting with an initial guess. Starting with SF = 1, Steps 7 and 8 are 

implemented and repeated with modified values of SF until equation (4) is satisfied. Successive 

values of SF are chosen by trial and error or by a convergence algorithm, for example, quasi 

Newton iteration procedures (Nocedal and Stephen, 2006). For a given ground motion, if equation 

(4) is satisfied by more than one SF, the SF closest to unity should be taken. The rationale behind 

this is that the applied SF should be limited to ensure that the scaled record does not show 

characteristics that would be unrealistic for the magnitude and distance pair to which it is referred.  
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Repeat Steps 7 and 8 for as many records as deemed necessary to obtain the scale factors SF for a 

single horizontal component of ground motion. If the structure is analyzed for bi-directional excitations, 

repeat Steps 1 through 6 to obtain a different target spectrum, pushover curve and SDF properties for the 

second horizontal component of ground motion. Using these items, specific to each horizontal component 

of ground motion, repeat Steps 7 and 8 for as many records as deemed necessary to obtain the scale 

factors. Note that the scale factors will be different for each record and different for each component of 

ground motion (Reyes and Chopra, 2011). This is the extended MPS procedure for two horizontal 

components of ground motion.  

If the higher modes are important for a given bridge, MPS procedure checks for second-”mode” 

compatibility of each scaled record by comparing its elastic spectral displacement response values at the 

second-”mode” vibration period of the bridge against the target spectrum. This approach ensures that each 

scaled earthquake record satisfies two requirements: (1) the peak deformation of the first-”mode” inelastic 

SDF system is close enough to the target value of its inelastic deformation; and (2) the peak deformation of 

the second-”mode” elastic SDF system is not far from the target spectrum. Ground motion records 

satisfying these two criteria should be used in nonlinear RHA. Further details on higher mode consideration 

in MPS can be found in Kalkan and Chopra (2010, 2011a,b) and Reyes and Chopra (2011).  

GROUND MOTIONS SELECTED 

A total of twenty-one near-fault strong earthquake ground motions were compiled from the Next Generation 

Attenuation project ground motion database. These motions were recorded during seismic events with 

moment magnitude 6.5 # M # 7.6 at closest fault distances Rcl ! 12 km and belonging to NEHRP site 

classification C or D. The twenty-one ground motions, listed in Table 1, are the most intense records 

available in the NGA database considering the hazard conditions specified. Shown in figure 1 (top panels) 

are the 5% damped response spectra of the y-component (corresponding to transverse direction of the 

bridge models) of ground motions. The median spectrum is taken as the design spectrum for purposes of 

evaluating the MPS procedure; also shown in this figure is the median spectrum of the ground motion 

ensemble as a four-way logarithmic plot, together with its idealized version (dashed-line). Similarly, the 

response spectra corresponding to the x-component (corresponding to longitudinal direction of the bridge 

models) of ground motions are shown in figure 1 (bottom panels). For a particular direction, the idealized 

spectrum is divided into three period ranges: the long-period region to the right of point d, Tn > Td, is called 

the displacement-sensitive region; the short-period region to the left of point c, Tn < Tc , is called the 
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acceleration-sensitive region; and the intermediate-period region between points c and d, Tc < Tn < Td, is 

called the velocity-sensitive region (Chopra,  2007; Section 6.8). Note that the nearly constant velocity 

region is unusually narrow, which is typical of near-fault ground motions.  

For the single-bent overpass and multi-span bridge, only the y-component of ground motion was taken 

into consideration for the analyses. For the curved bridge and the skew bridge, both horizontal components 

of the twenty-one ground motion records were utilized. Because the twenty-one ground motions selected 

were not intense enough to drive the curved bridge model far into the inelastic range—an obvious 

requirement to test any scaling procedure—both horizontal components of the twenty-one ground motions 

were amplified by a factor of 3. These amplified records were treated as “unscaled” records.  

DESCRIPTION OF BRIDGES AND COMPUTER MODELS 

In order to cover a wide variety of reinforced concrete bridges, four types of existing “Ordinary Standard” 

bridges in California were considered: single-bent overpass, multi-span bridge, curved bridge and skew 

bridge. These bridges and their computer models are introduced briefly below. Their photos, structural 

drawings, material properties and the details of their computer models in OpenSees (2009) can be found in 

Kalkan and Kwong (2010). 

SINGLE-BENT OVERPASS 

The selected bridge with a two-span continuous deck and single-bent composed of two octagonal columns 

is representative of an overcrossing designed according to post-Northridge Caltrans specifications. The 

bridge has stub wall abutments restrained in the longitudinal and transverse directions as a result of end 

diaphragm and wing wall interaction with the soil. The column bent footings were modeled as translational 

springs in each orthogonal direction. The abutments were modeled as restrained supports in the vertical 

direction and as translational springs in longitudinal and transverse directions. The finite element model of 

the bridge is represented by 3-D frame elements passing through the mid-depth of the superstructure and 

3-D frame elements passing through the geometric centre and mid-depth of the columns and the cap beam 

(Figure 2a). Fiber-discretized, force-based nonlinear beam-column elements were used to model columns; 

the integration along the element is based on Gauss-Lobatto quadrature rule. A fiber section model at each 

integration point, which in turn is associated with uniaxial material models and enforces the Bernoulli beam 

assumption for axial force and bending, represents the force-based element. Centerline dimensions were 

used in the element modeling for all cases. The deck elements were assumed to remain elastic based on 
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the capacity design approach employed by the SDC-2006. The box-girder was assumed to be integral with 

the bent, thus full continuity was employed at the superstructure-bent connection. P-$ effects were 

considered at the global level.  

MULTI-SPAN BRIDGE 

The bridge selected is representative of typical multi-span, single-frame prestressed concrete bridges built 

according to post-Northridge Caltrans design specifications. The bridge was modeled as an elastic 

superstructure sitting on nonlinear columns on elastic foundation (figure 2b). Fiber-discretized, force-based 

nonlinear beam-column elements were used to model the columns while the deck elements were assumed 

to remain elastic. P-$ effects were considered at the global level. The columns of the bridge rest on shallow 

foundations. Elastic springs in three translational directions were used to model the soil effect. Seat type 

abutments are used at both ends of the bridge. Spring systems were used to model the dynamic stiffness 

of the abutments. In the vertical direction, the movement of the bridge is vertically prevented at the 

abutments.  

CURVED BRIDGE 

The curved bridge is representative of typical short-span prestressed concrete bridges built according to 

post-Northridge Caltrans design specifications. Two columns support the curved deck. Sliding bearings 

support the bridge at the abutments. The deck was assumed to be elastic while the two columns were 

modeled as fiber-discretized force-based nonlinear beam-column elements. Due to the curved nature of the 

deck, the co-rotational geometric transformation was employed for all elements of the model. Co-rotational 

coordinate transformation performs a near-exact geometric transformation of element stiffness and 

resisting force from the basic system to the global coordinate system. This approach provides more 

accurate results than the conventional geometric transformation for large deformations due to P-$ effects. 

In terms of boundary conditions, the bases of the two columns were fixed, and the two abutments were 

modeled as elastic springs. 

SKEW BRIDGE 

The bridge selected is representative of typical short-span, concrete overcrossings built in late 70s. The 

“skewed” single bent is roughly near the middle of the span. Wing walls at the abutments support the 

bridge. In the computer model, the deck was assumed to be elastic while the bent was modeled with two 

fiber-discretized nonlinear force-based beam-column elements joined by two elastic rigid beams. Due to the 
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unsymmetrical plan, the co-rotational geometric transformation was employed for all elements of the model. 

As for the boundary conditions, the bases of the two columns at the bent were fixed. The two abutments, 

however, were fixed in all degrees of freedom except for the translation along the longitudinal direction and 

the rotation about the axis parallel to the transverse direction of the bridge. Additionally, one of the 

abutments was free to move transversely relative to the other abutment.  

FIRST – “MODE” SDF-SYSTEM PARAMETERS 

The mode shapes of all bridges are provided in Kalkan and Kwong (2010). For the single-bent overpass, 

the first-”mode” (0.54 s) involves a transverse translation of the deck and the second-”mode” (0.52 s) 

involves a longitudinal translation of the superstructure. The multi-span bridge has the first-”mode” (2.47 s) 

in the translational direction and second-”mode” (1.06 s) in the longitudinal direction. The transverse 

direction is more flexible for both bridges.  

For the curved bridge, the first-”mode” (0.41 s) and second-“mode” (0.34 s) involves translation in both 

the transverse and longitudinal directions of the bridge. Due to the unsymmetrical nature of the bridge, the 

transverse and longitudinal directions are coupled. For the skew bridge, the first-”mode” (0.81 s) involves 

primarily translation in the longitudinal direction of the bridge with slight movement in the transverse 

direction due to skewness while the second-”mode” (0.51 s) consists primarily of translation in the bridge’s 

transverse direction. 

Modal pushover curves for four bridges were developed in the transverse and longitudinal directions 

separately. Similar to the modal pushover analyses procedure for buildings (Chopra, 2007), the distribution 

of lateral forces was determined from the shape of the fundamental transverse mode, and fundamental 

longitudinal mode, multiplied by tributary mass (i.e., lumped mass). For the curved and skew bridges, the 

fundamental mode of the entire 3-D structure was used in determination of the distribution of lateral forces. 

The pushover curves were then converted to those corresponding to the equivalent SDF system using 

relations described in Step 5 of the summary of the MPS procedure. For each direction, the resultant SDF 

pushover curves are displayed in figures 3 and 4 with a thick solid line, while bilinear idealization of 

pushover curves is shown in thick dashed lines. These stable bilinear curves also define the hysteretic 

force-deformation relations for each bridge. Since stiffness and strength degradation were not accounted 

for, the unloading branch of the hysteretic curve has the same slope with that of the initial loading branch. 
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EVALUATION OF MPS PROCEDURE 

The accuracy of the MPS procedure was evaluated by comparing the median (defined as the geometric 

mean by assuming log-normal distribution of EDP) value of an EDP due to three sets of randomly selected 

seven scaled ground motions against the benchmark value, defined as the median value of the EDP due to 

the twenty-one unscaled ground motions. Although the selection process was random, no more than two 

records from the same event were included in a single set so that no single event is dominant within a set. 

The use of seven ground motions within a set has been shown to provide statistically robust estimates from 

nonlinear RHAs (Reyes and Kalkan, 2011). 

In evaluation, a scaling procedure is considered to be accurate if the median values of an EDP due to 

the seven scaled ground motions are close to benchmark value; it is considered to be efficient if the 

dispersion of an EDP due to the set of seven scaled ground motions is small. Smaller dispersion in EDPs 

means a smaller number of analyses to obtain a given confidence level in the results. The median value 

( ) defined as the geometric mean and the dispersion measure ($ ) of n observed values of  are 

calculated from the following expressions 

      and       (5) 

BENCHMARK RESULTS 

Figure 5 shows the benchmark EDPs for both the single-bent overpass and multi-span bridge together with 

results from individual records to show the large record-to-record variability (i.e., large dispersion). EDPs 

adopted here are global response parameters: peak value of deck drift ratio (i.e., deck displacement ÷ 

height of column) and maximum column plastic rotation over the response histories. Only the EDP’s in the 

transverse direction were taken into consideration because it is the weakest direction for both bridges. The 

peak values of deck drift ratios due to the twenty-one unscaled ground motions range from 1% to 5%, and 

column plastic deformations range from less than 0.01 rad to over 0.05 rad. All of the excitations drive both 

bridges well into the inelastic range (Kalkan and Kwong, 2010). 

Figure 6 shows the benchmark EDPs in the transverse direction (top panels) and in the longitudinal 

direction (bottom panels) for the curved bridge, along with results from individual records to show the large 
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record-to-record variability. With a curved span, the terms ‘longitudinal’ and ‘transverse’ refer to the global x 

and y axes, respectively, that are adopted in the OpenSees model. The local axes for the columns are not 

in alignment with the global axes. Consequently, the column plastic rotations, recorded with respect to the 

local axes, are not in alignment with the global axes. The peak drift ratios, however, are determined with 

respect to global axes. Nevertheless, the column plastic rotations associated with the local axes are still 

referred to as transverse and longitudinal EDPs. It can be seen in figure 6 that EDPs in the transverse 

direction are generally larger than those in the longitudinal direction. For peak drift ratios, the median value 

is 1.5% in the transverse direction whereas the median value is 0.85% in the longitudinal direction. 

Similarly, for column plastic rotations, the median is 0.005 rad in the transverse direction whereas the 

median is 0.002 rad in the longitudinal direction.  

Figure 7 shows the benchmark EDPs in the transverse direction (top panels) and in the longitudinal 

direction (bottom panels) for the skew bridge. Due to the boundary conditions for this model, the EDPs in 

the longitudinal direction are generally much larger than those in the transverse direction. For peak drift 

ratios, values in the transverse direction ranged from 0.5% to slightly over 1%, with a median value of 

0.63%, while those in the longitudinal direction ranged from 1% to over 6%, with a median value of 2.5%. 

Similarly, for column plastic rotations, values in the transverse direction ranged from 0.002 rad to about 

0.01 rad, with a median value of 0.005 rad, while those in the longitudinal direction ranged from 0.01 rad to 

over 0.06 rad, with a median value of 0.023 rad. All of the excitations led to inelastic responses for both 

curved and skew bridges (Kalkan and Kwong, 2010). 

TARGET VALUE OF INELASTIC DEFORMATION 

In evaluation of the MPS procedure, “exact” target value of inelastic deformation  was assumed to be 

unknown, and it was estimated (Step 6 of the MPS procedure) by the  equation (Chopra and 

Chintanapakdee, 2003, 2004) using post-yield stiffness ratio (figures 3 and 4) and yield-strength ratio. 

Yield-strength ratio  was determined (Step 4 of the MPS procedure) as 3.1 and 3.5, respectively for the 

single-bent overpass and multi-span bridge. Alternatively, “exact*” target value of deformation  was 

computed by nonlinear RHAs of the first-“mode” inelastic SDF system for twenty-one unscaled records. 

Figure 8 compares the estimated target value of deformation using the  equation against its “exact” 

                                                
* The term “exact” is used herein a somewhat loose sense as implied by the quotation mark because it is defined on the basis of 
twenty-one ground motions. According to the random sampling theory, this set is assumed to be a representative subset of a 
much larger population of recorded and not yet recorded ground motions according to the specified hazard conditions.  
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value for the single-bent overpass and multi-span bridge; values from individual records are also included 

to show its large record-to-record variability. In this figure, the  equation overestimates “exact” value of 

 by 12%-14%.  

For the curved and skew bridges, which will be analyzed under bi-directional excitations due to their 

irregular geometry, the MPS procedure will be applied to each horizontal direction separately. This requires 

consideration of target deformation in both horizontal directions (Reyes and Chopra, 2011). Figure 9 (top 

panels) compares the estimated target value using the  equation against its “exact” value for both the y 

and x components of ground motion for the curved bridge. The yield-strength ratio used in the  equation 

was determined as 1.61 for the y direction. The  value for the x direction is set to 1 because the force 

required for the SDF system, in this particular direction, to remain elastic is less than its yield force. Figure 

9 (bottom row) compares the estimated target value using the  equation against its “exact” value for 

both the y and x components of ground motion for the skew bridge. The yield-strength ratios were 

determined as 6.1 and 2 for the x and y directions, respectively. It is observed that the target value of 

inelastic deformation  is much greater in the longitudinal direction than that in the transverse direction. 

For these two bridge models, the  equation overestimates the “exact” value of  by 9%-18% in the 

transverse direction and by 1%-3% in the longitudinal direction. 

COMPARISONS AGAINST BENCHMARK RESULTS 

Both the single-bent overpass and multi-span bridge are first-“mode” dominated; the modal participation 

ratio for the first-“mode” is much larger than other higher modes. Thus, Steps 7 and 8 of the single-

component MPS procedure are implemented to determine an appropriate scale factor for each record. In 

the curved and skew bridge models, the two-component MPS procedure (Reyes and Chopra, 2011) is 

implemented to determine an appropriate scale factor for each horizontal component of each record. The 

scale factors established for all bridges are less than 3 indicating that the original characteristics of the 

ground motions are in general well retained. The values of scale factors for each bridge and for each set 

are reported in Kalkan and Kwong (2010).  

The EDPs determined by nonlinear RHAs of bridges due to three sets of 7 ground motions scaled 

according to the MPS procedure are compared first against the benchmark EDPs. Figures 10-17 exhibit the 
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representative comparisons for the transverse EDPs. Reader may refer to Kalkan and Kwong (2010) for the 

complete sets of comparisons.  

To better examine the accuracy of the MPS procedure, ratios of median value of EDPs from the MPS 

procedure to the benchmark value are computed and listed in Table 2 for each bridge and for each set of 

ground motions. For the single-bent overpass (figure 10), the maximum deviation of median value of EDPs 

due to the MPS procedure from the benchmark value is 18% for the deck drift ratio and 21% for the column 

plastic rotation for Set 1. More accurate results with deviations ranging from 7%-10% were obtained in case 

of Sets 2 and 3. For the multi-span bridge (figure 11), median deck drift ratios due to the MPS procedure 

overestimate the benchmark value by a maximum of 14% for deck drift ratio and 19% for column plastic 

rotation in Set 2. Using Sets 1 and 3 resulted in slightly better accuracy, with the deviations in the range of 

10%-17%. For the curved bridge (figure 12), the median values of deck drift ratios are greater than the 

benchmark values by 38% on average in the transverse direction (see Table 2). In the case of the skew 

bridge model (figure 13), the median values of deck drift ratios are larger than the benchmark values by 

30% on average in the transverse direction. The column plastic rotations are, on average, 33% greater in 

the transverse direction. 

As evident in figures 10 through 13, the dispersion of EDPs is significantly reduced when records are 

scaled using the MPS procedures (compare with larger scatter from figures 5, 6 and 7). To quantify this 

reduction, the standard deviation (%, see equation 5) of ratio of the EDP value from each individual ground 

motion to the median benchmark value is computed and listed in Table 3 for each set of ground motions 

and for each bridge. It is apparent in this table that the dispersion in each set and for each bridge is much 

lower than that from the corresponding benchmark cases, where records are unscaled but consistent with 

the hazard condition defined in terms of magnitude, distance and site-condition.  

For the single-bent overpass, the standard deviations (%) of EDPs from the unscaled records are 

reduced by 39% to 77% using the one-component MPS procedure. For the multi-span bridge, the reduction 

in % is in the range of 33% to 66%. These results demonstrate that the one-component MPS procedure 

leads to scaled ground motions that yield accurate estimates of median EDPs that are accompanied with 

dramatically reduced dispersions relative to the unscaled ground motions, as well.  

With regard to the curved bridge, the reduction in % for the EDPs is, on average, 50% for the transverse 

direction and 39% for the longitudinal direction. For the skew bridge, the reduction in % for the EDPs is, on 

average, 60% for the transverse direction, and 54% for the longitudinal direction. These results 
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demonstrate that scaling records with the two-component MPS procedure provides EDPs with dispersion 

that is significantly lower than that obtained with unscaled ground motions.  

Utilizing the “exact” value of the target inelastic deformation (i.e., median inelastic deformation value as 

shown in figure 8), in the one-component MPS procedure (referred to as MPS-“Exact”) further improves the 

accuracy as shown in figures 14 and 15 for the single-bent overpass and multi-span bridge, respectively. 

For the single-bent overpass, the maximum deviation of median EDPs due to the MPS-“Exact” procedure 

from the benchmark value is 15% for the deck drift ratio and 16% for the column plastic rotation considering 

Set-2. Much better accuracy is obtained using Set 1, and excellent agreement with the benchmark values is 

achieved using Set 3. For the multi-span bridge, median values of EDPs due to the three sets of ground 

motions perfectly match with the benchmark values (maximum deviation is only 6%).  

Utilizing the “exact” value of the target inelastic deformation in both horizontal directions of ground 

motion (i.e., median inelastic deformation value as shown in figure 9), in the two-component MPS 

procedure (referred to as MPS-“Exact”) also further improves the accuracy as shown in figures 16 and 17 

for the curved and skew bridges. From the figures (plotted in the same scales), it is evident that the median 

value from each set is much closer to the benchmark value. 

Referring to Table 2 for the curved bridge, the peak drift ratios are now only about 19% larger in the 

transverse direction and 18% larger in the longitudinal direction than the benchmark value. Similarly, the 

column plastic rotations are on average, 56% larger in the transverse direction and 55% larger in the 

longitudinal direction than the benchmark plastic rotations. 

A similar improvement in accuracy is also observed for the skew bridge model as shown in Table 2. 

The peak drift ratios are, on average, 19% larger in the transverse direction and, on average, 23% larger in 

the longitudinal direction than the benchmark drift ratio. The column plastic rotations are now roughly 21% 

greater in both directions than the benchmark plastic rotations. Similar to the curved bridge model, the 

discrepancies are alike in magnitude for both directions. 

As shown in Table 3 for the multi-span bridge, the dispersion in EDPs is also further reduced (12%, on 

average, as compared to the MPS procedure) by utilizing the “exact” value of the target inelastic 

deformation for the one-component MPS procedure. A less reduction in dispersion (3% on average) is 

observed in the single-bent overpass. Similarly, the dispersion in EDPs further diminished for the skew and 

curved bridges by utilizing the “exact” values of the target inelastic deformation in both directions for the 

two-component MPS procedure. This reduction is 5% for the skew bridge and 4% for the curved bridge. 
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How will these results change if a different combination of seven ground motions was used? In order to 

answer this question systematically, the ratio of median EDP value from a set of seven records to 

benchmark value (EDP value ÷ benchmark value) was computed for as many sets of ground motions as 

possible. With 21 records to choose from and 7 records used in a single set, 116,280 sets were 

constructed. With over 100,000 possible realizations of the EDP ratios, histograms may be plotted. The 

distributions of median EDP ratios for deck drift and column plastic rotation are shown in figure 18 (based 

on the MPS-“Exact” approach) for the single-bent overpass and multi-span bridge. The median results from 

the original randomly selected three sets of seven records (Sets 1 through 3) are also presented. It is 

evident that the results based on arbitrary Sets 1 through 3 lie within the 16- and 84-percentile range of the 

overall distribution of deck drift ratio, where the median and standard deviation for this distribution are 0.98 

and 0.08 respectively. For the multi-span bridge, the results from the three randomly selected sets also 

cover the 16- and 84-percentile for deck drift ratio distribution with a median and a standard deviation of 

1.02 and 0.05, respectively. Similar observations can be made for the plastic rotation response quantity. In 

all, this figure indicates that the results from the randomly selected three sets (Sets 1 through 3) are 

representative subsets of a much larger population. 

CONCLUSIONS 

Based on four “Ordinary Standard” bridges in California, the accuracy and efficiency of the MPS procedure 

(both one and two-component versions) are assessed by comparing the median values of the engineering 

demand parameters (EDPs) due to three sets of seven scaled records against the benchmark values. The 

one-component MPS procedure was applied to the single-bent overpass and multi-span bridge while the 

two-component MPS procedure was applied to the curved and skew bridges. The efficiency of the MPS 

scaling procedure was evaluated by computing the dispersion of the responses to the seven scaled ground 

motions in each set and comparing it with that from the benchmark cases. This evaluation of the MPS 

procedures has led to the following conclusions: 

1. Even for the most intense near-fault ground motions, which represent severe tests, the one-

component MPS method with a small number of records estimates the median value of seismic 

demands to a good degree of accuracy for bridges having regular geometry. The maximum 

discrepancy is 18% of the benchmark value for the single-bent overpass and 14% of the benchmark 

value for the multi-span bridge. The average discrepancies of 12% in deck drift ratios and 14% in 
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column plastic rotations for both bridges are achieved. This demonstrates the accuracy of the one-

component MPS method.  

2. Considering bidirectional ground excitation, the two-component MPS procedure overestimates 

seismic demands for bridges with irregular geometries. For the curved bridge model, the average 

discrepancies in column plastic rotations are larger than those for peak drift ratios. The average 

discrepancy for peak drift ratios is 38% in the transverse direction and 33% in the longitudinal 

direction. For the skew bridge model, however, the average discrepancies for peak drift ratios are 

smaller, as such 30% in the transverse direction and 26% in the longitudinal direction.  

3. The dispersion (or record-to-record variability) in the EDPs due to seven scaled records around the 

median is much smaller when records are scaled by both the one-component and two-component 

MPS procedures as compared to the unscaled records. This implies stability in the EDPs estimated 

from records that are scaled according to the MPS procedures relative to those obtained from 

unscaled records. Despite high levels of inelastic action and irregular geometries, the MPS 

procedures can reduce the scatter in estimates by 50% on average. These observations indicate the 

efficiency of the MPS procedures. It should be noted that smaller dispersion in EDPs means a 

smaller number of analyses to obtain a given confidence level in the EDPs. 

4. Utilizing “exact” target value of inelastic deformation further improves the accuracy but slightly 

improves the efficiency. This improvement in accuracy depends, however, on the precision involved 

in estimating the “exact” target value of inelastic deformation. Although the additional reduction in 

dispersion is about 12% for the multi-span bridge, it is less than 5% for all other bridge models.  

As shown here for the “Ordinary Standard” bridges, the MPS procedures were accurate and efficient 

enough in reducing the number of records needed to provide stable estimates of peak displacement and 

plastic rotation demands from nonlinear RHA of geometrically regular bridges to levels practical for typical 

bridge design offices. Due to complex response behavior of geometrically irregular bridges, the MPS-

“Exact” procedure utilizing exact value of target inelastic deformation provides more accurate results as 

compared to the MPS procedure utilizing estimated value of target inelastic deformation. All reported 

results here are based on stable force-deformation relations. Although not expected, adopting other 

hysteretic model may alter the results achieved regarding either the accuracy or the efficiency of the 

procedure.    



 
 

 
 

18 

DATA AND RESOURCES 

Readers are referred to the MPS procedure website http://nsmp.wr.usgs.gov/ekalkan/MPS/index.html for 

further details on assessment of the one- and two-component MPS methods, and also for accessing 

MatLAB codes for scaling ground motion records using the MPS and MPS-“Exact” methods.  
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NOTATION 
The following symbols are used in this paper: 

 =  Target pseudo-spectral acceleration  

CR =  Ratio of peak deformations of inelastic and corresponding elastic SDF  

   systems for systems with known yield-strength reduction factor 
 =  Target value of nth mode elastic deformation  
 =  First-“mode” target value of inelastic spectral displacement  

Dn(t) =  Deformation of a SDF system 
 =  Peak deformation of inelastic SDF system 

Dn =  Peak deformation of elastic SDF system 

D1,y =  Yield deformation of inelastic SDF system 

Fs1 =  System resisting force under first-“mode” pushover 

m  =  Mass matrix of a MDF system 

M =  Moment magnitude of earthquake 

M*   Effective modal mass 

n =  Mode sequence number 

Ry  =  Yield-strength reduction factor 

Rrup =  Closest distance to co-seismic rupture plane 
 =  Load vector of modal pushover analysis 

SF =  Ground motion scaling factor 

Tn =  Elastic natural vibration period 

Tc =  Period separating acceleration and velocity-sensitive regions of the spectrum 

ud1 =  Deck displacement of a bridge under first-“mode” pushover 

 =  Earthquake ground acceleration 

Vb1 =  Base shear under first-“mode” pushover 

Vb1y =  Global yield strength under first-“mode” pushover 

VS30 =  Average shear-wave velocity within 30 m depth from surface 

& =  Ratio of post-yield and initial stiffness 

# =  Damping ratio 
! =  Modal participation factor 

"  =  Mode shape vector 
 =  Influence vector  
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Table 1. Selected near-fault ground motion records 
 

 
 
 
Table 2. Comparison of EDP ratios considering MPS and MPS-“Exact” for four bridges and for three sets of 
seven ground motion records 
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Table 3. Comparison of dispersion measures (% ) considering MPS and MPS-“Exact” for four bridges and for 
three sets of seven ground motion records 
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Figure 1. [Left panels] Individual response spectra for twenty-one unscaled ground motions and their median response 

spectrum taken as the design spectrum; [Right panels] Median elastic response spectrum (i.e., design 
spectrum) shown by a solid line, together with its idealized version in dashed line; spectral regions are also 
identified; Damping ratio, ! = 5%. [Top panels] “y-component” of the ground motion records (i.e., transverse 
direction of bridge models); [Bottom panels]  “x-component” of the ground motion records (i.e., longitudinal 
direction of bridge models). 
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Figure 2. Idealized computer models of bridges. 

 
 

 

        
Figure 3. First-”mode” SDF pushover curve (solid line) and its idealized bilinear model (dashed line) in transverse and 

longitudinal directions for single-bent overpass [top panels] and multi-span bridge [bottom panels]. 
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Figure 4. First-”mode” SDF pushover curve (solid line) and its idealized bilinear model (dashed line) in transverse and 

longitudinal directions for curved bridge [top panels] and skew bridge [bottom panels]. 
 

 
Figure 5. Median values of benchmark EDPs in transverse direction determined by nonlinear RHA of single-bent 

overpass [left panels] and multi-span bridge [right panels] due to 21 ground motions; results for individual 
ground motions are also included.  
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Figure 6. Median values of benchmark EDPs in transverse direction [top panels] and EDPs in longitudinal direction 
[bottom panels] determined by nonlinear RHA of curved bridge due to 21 ground motions; results for 
individual ground motions are also included.  

 

 

 
Figure 7. Median values of benchmark EDPs in transverse direction [top panels] and EDPs in longitudinal direction 

[bottom panels] determined by nonlinear RHA of skew bridge due to 21 ground motions; results for individual 
ground motions are also included.  
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Figure 8. Peak deformation  values of the first-”mode” inelastic SDF system for 21 ground motions for single-bent 

overpass [left panel] and multi-span bridge [right panel]; “exact” target value of deformation  is identified 

by horizontal dashed line; horizontal continuous line indicates target value of deformation  established by 

the CR equation.  
 

 
Figure 9. Peak deformation  values of the first-”mode” inelastic SDF system in the transverse direction [left] and in 

the longitudinal direction [right] for 21 ground motions for curved bridge [top panels] and skew bridge [bottom 

panels]; “exact” target value of deformation  is identified by horizontal dashed line; horizontal continuous 

line indicates target value of deformation  established by the CR equation.  
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Figure 10. Comparison of median EDPs based on the MPS with benchmark EDPs for the single-bent overpass; 
individual results for each of the seven scaled ground motions are also presented. 

 

 
 

 
Figure 11. Comparison of median EDPs based on the MPS with benchmark EDPs for the multi-span bridge; individual 

results for each of the seven scaled ground motions are also presented.  
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Figure 12. Comparison of median EDPs in transverse direction based on the MPS with benchmark EDPs for the curved 

bridge; individual results for each of the seven scaled ground motions are also presented.  
 

 
 

 
Figure 13. Comparison of median EDPs in transverse direction based on the MPS with benchmark EDPs for the skew 

bridge; individual results for each of the seven scaled ground motions are also presented.  
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Figure 14. Comparison of median EDPs based on the MPS-“Exact” with benchmark for the single-bent overpass; 
individual results for each of the seven scaled ground motions are also presented. 

 

 
 

 

Figure 15. Comparison of median EDPs based on the MPS-“Exact” with benchmark EDPs for the multi-span bridge; 
individual results for each of the seven scaled ground motions are also presented.  
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Figure 16. Comparison of median EDPs in transverse direction based on the MPS-“Exact” with benchmark EDPs for the 
curved bridge; individual results for each of the seven scaled ground motions are also presented. 

 
 

 

 

Figure 17. Comparison of median EDPs in transverse direction based on the MPS-“Exact” with benchmark EDPs for the 
skew bridge; individual results for each of the seven scaled ground motions are also presented. 
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Figure 18. Distribution of median EDP ratios (EDP value ÷ benchmark value) based on the MPS-“Exact” for the single-
bent overpass and multi-span bridge for more than 100,000 sets of seven ground motion records; median 
results from randomly selected three sets of seven records (Sets 1 through 3) are also shown using vertical 
dashed lines.  

 
 
 

 
 

 
 

 
 

 

 

 


